Compute the greatest common divisor of $n$ numbers.

* Put a number in every line.

The greatest common divisor (gcd) of two or more integers is the largest positive integer that divides each of the integers.

Let $a_1, a_2, \cdots, a_n \in \mathbb{N}^{*}$, the gcd of $a_1, a_2, \cdots, a_n$ is denoted : $$\gcd(a_1, a_2, \cdots, a_n)$$ Or with the notation : $$a_1 \wedge a_2 \wedge \cdots \wedge a_n$$

Let $a_1, a_2, \cdots, a_n \in \mathbb{N}^{*}$, the gcd of $a_1, a_2, \cdots, a_n$ is denoted : $$\gcd(a_1, a_2, \cdots, a_n)$$ Or with the notation : $$a_1 \wedge a_2 \wedge \cdots \wedge a_n$$

Share page